

CENTRO | P SYNCHRO

Désaccouplement sans frottement mécanique → Charge de couple sans perte la souplesse du mouvement

Processus sécurisé lors du filetage

2

Longévité outil supérieur

FAHRION CENTROIP SYNCHRO

<u>CARACTÉRIS</u>TIQUES

Caractéristiques

Forces axiales extrêmement faibles pour une faible pression sur les flancs et une qualité de surface parfaite.

Amortisseur de torsion et mécanisme de compensation dans dans la direction circonférentielle.

Profondeur jusqu'à 150 mm réalisable avec un contour d'interférence Ø10 (pour filetage M0,5 - M3).

Convient pour l'alimentation en liquide jusqu'à 80 bars.

Convient pour les tarauds coupants et les tarauds par déformations.

Convient pour les filetages à droite et à gauche.

Convient pour les trous borgnes et trous débouchants.

Compensation de la longueur minimale dans le sens de la poussée et de la traction.

Réduit considérablement la pressionsur les centres d'usinage CNC anciens et nouveaux.

Avantages

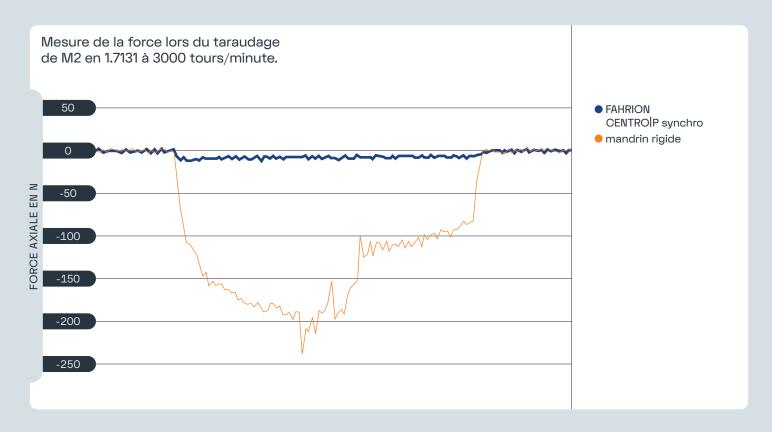
Encore plus stable! Des processus plus sûrs même en cas de couple élevé.

Encore plus robuste ! Durée de vie du taraud plus élévé.

Encore plus petit! Diamètre extérieur nettement plus petit que celui des produits précédemment disponibles sur le marché.

Encore plus! Beaucoup plus de refroidissement directement sur l'outil que le meilleur concurrent (pour ER8).

Encore plus précis! Deux fois plus de concentricité pour une pression moindre sur les flancs.

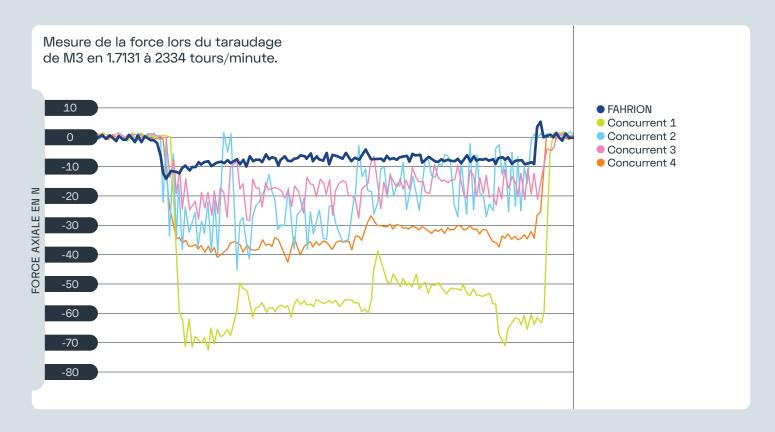


Encore plus doux! Amortisseur du sens d'Inversion de rotation pour réduire les bris d'outils.

3

FAHRION CENTRO CARACTÉRISTIQUES

Ce qu'un mandrin synchro est capable


Un mandrin de taraudage avec compensation de la Les forces axiales générées lors de l'usinage des filets longueur minimale (mandrin synchro) compense les s'exercent sur lui. Afin de produire des filets de manière avec compensation synchronisée (ligne bleue). fiable il est crucial que le mandrin synchro puisse conserver sa souplesse de mouvement, en particulier sous l'effet d'un couple élevé.

sont clairement visibles sur le diagramme : Usinage avec erreurs de synchronisation et maintient les forces qui un mandrin rigide (ligne orange) comparé à un mandrin

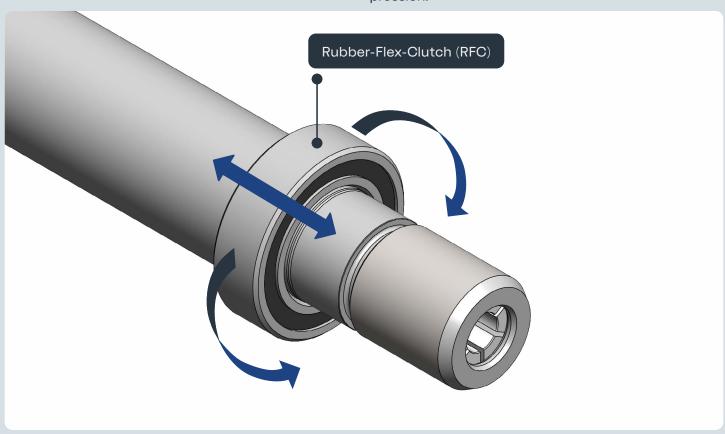
La règle générale est la suivante : Plus la force axiale est faible, plus la qualité est bonne, l'usure, la durée de vie de l'outil le processus est plus sûr.

Ce qui rend CENTRO|P synchro si unique

un blocage » Il s'agit d'un problème de base permanent causé par des billes, des goupilles ou d'autres sous l'effet d'une charge de couple. La technologie FAHRION se passe de ces éléments mécaniques de verrouillage et fonctionne avec notre embrayage en instance de brevet (« embrayage caoutchouc-flexible »/ RFC).

Tous les ingénieurs en mécanique le savent : « Lorsque Le « Rubber-Flex-Clutch » (RFC) permet au porte-outil l'on tourne et que l'on tire en même temps, on obtient d'absorber les charges de couple sans verrouillage mécanique. Le processus d'entraînement et d'égalisation se déroule « d'un seul tenant » et est pratiquement sans frottement. En outre, le RFC garantit un amorti lorsque le sens de de rotation est inversé.

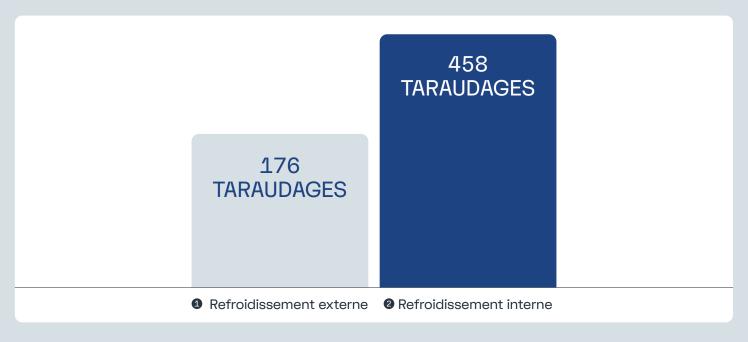
Le diagramme montre 4 mandrins avec différentes mécaniques synchronisées que nous avons comparés avec notre technologie RFC.


On peut clairement constater que notre mandrin de taraudage présente les forces axiales les plus faibles en usure (ligne bleu foncé).

De la compensation synchronisée dans les quatre directions à la compensation synchronisée sans jeu.

Force de traction et de torsion pendant le filetage

Force de poussée et de torsion après inversion du sens de rotation


→ Le RFC agit sur l'entraînement radial dans le sens de la rotation et sur la compensation axiale dans les directions de la traction et de la compression. → Le RFC agit sur l'entraînement radial dans le sens inverse de la rotation ainsi que sur la compensation axiale dans les directions de la traction et de la compression.

Les mandrins CENTRO|P synchro se caractérisent par un guidage particulièrement long et précis de l'arbre de haute qualité FAHRION.

Quelle est l'influence de l'approvisionnement en lubrifiant de refroidissement sur le processus de filetage?

Lors de plusieurs tests de durée de vie des outils, nous avons déterminé la durée de vie moyenne de l'outil de filetage avec différentes méthodes d'alimentation en pratique, cet alignement idéal des buses d'arrosage lubrifiant réfrigérant :

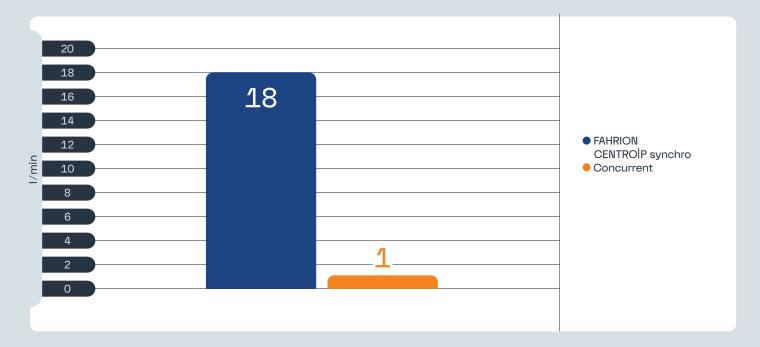
- Refroidissement externe par des buses de refroidissement
- 2 Refroidissement interne par le taraud Le résultat est très clair :

Lorsque le refroidissement se fait de l'extérieur, la quantité de liquide de refroidissement qui atteint l'arête de coupe est insuffisante, ce qui entraîne un mauvais arrosage, ce qui réduit la durée de vie de l'outil de l'outil de filetage.

Dans ce test, le refroidissement externe était aligné de manière optimale avec l'arête de coupe. Dans la est presque impossible à réaliser et surtout à maintenir.

Le refroidissement interne, que ce soit par la pince de serrage ou par l'outil, s'est avéré optimal.

Dans ce cas, une quantité suffisante et régulière de liquide de refroidissement est toujours appliquée à l'arête de coupe. Les ajustements et réajustements fastidieux sont totalement inutiles.



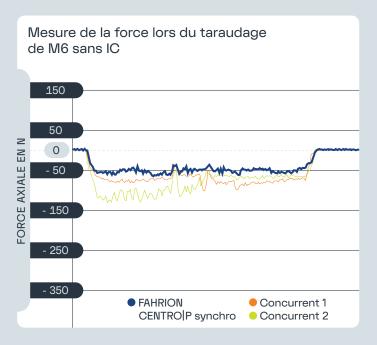
L'alimentation en lubrifiant réfrigérant a une très grande influence sur le processus. L'alimentation refroidissement interne du lubrifiant augmente considérablement la durée de vie de l'outil.

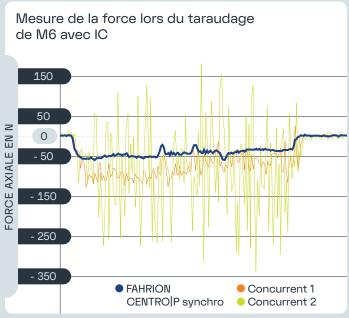
Qu'il s'agisse d'outils avec ou sans canal de refroidissement interne, le FAHRION HPD/HPDD ou GBD/GBDD (voir pages 16-21) permet d'obtenir une alimentation optimale.

Une alimentation optimale en liquide est-il possible avec tous les mandrins synchro?

ne peut pas être simplement alimenté comme avec un plusieurs pièces. Il en résulte des différences significatives dans les débits.

Avec un mandrin synchro, le liquide de refroidissement La disposition optimisée et la grande section des canaux de notre CENTRO|P synchro s'avèrent clairemandrin standard, mais doit inévitablement traverser ment payantes. Avec le corps du mandrin MSC8, nous avons obtenu un débit 18 fois le débit par rapport au meilleur produit concurrent avec refroidissement interne à force axiale neutre (voir page suivante).


Refroidissement et lubrification optimal n'est pas possible avec tous les mandrins synchro.


Les débits diffèrent souvent.

Les mandrins synchro de FAHRION atteignent le débit le plus élevé des mandrins comparables disponibles sur le marché.

La fonction du mandrin synchro est elle influencé par la lub. interne?

Mesure de la force lors du taraudage d'un filet M6 avec un mandrin synchrone, l'alimentation en lubrifiant de refroidissement interne étant désactivée.

Les 3 mandrins synchro présentent la courbe de force Pour l'un des deux concurrents en particulier, la courbe es se produisant avec le CENTROIP synchro sont les gauche (ligne verte). plus faibles.

Mesure de la force pendant le taraudage d'un filet M6 avec mandrin synchro avec refroidissement interne alimentation en lubrifiant activée.

typique lors de la formation d'un taraudage. Les forc- s'écarte sensiblement de la courbe du diagramme de

Dans ce cas, la fonction de la compensation synchronisée et donc le processus fiable n'est plus n'est plus garantie. En revanche, le CENTRO|P synchro est équipé d'un système de refroidissement interne neu tral à force axiale. La courbe est comparable à celle du diagramme de gauche et n'a donc pas d'influence sur la pression du lubrifiant de refroidissement.

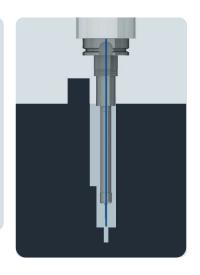


Sans force axiale neutre plus la pression est élevée, plus la synchronisation est mauvaise.

Grâce à la force axiale neutre des canaux de refroidissement dans le CENTRO|P synchro, la fonctionnalité de le RFC sont optimisées même en cas de pression élevée de l'arrosage.

Précision et synchronisation encombrement réduit ...

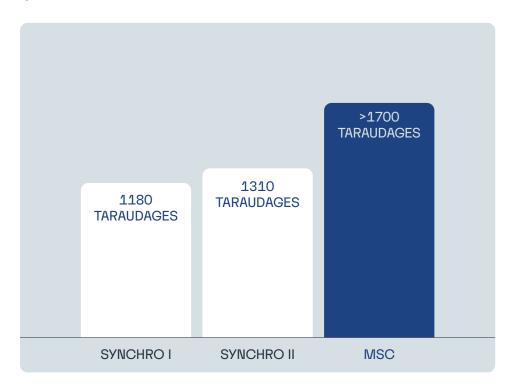
La conception des rails de guidage, spécifique à Des économies supplémentaires : FAHRION, assure une concentricité maximale, même Vous n'avez besoin que du mini-mandrin synchro (MSC) Notre mini-mandrin synchro MSC8 ne nécessite qu'un plus longue. diamètre de 10 mm sur l'écrou de serrage.


en cas de longs porte-à-faux. L'embrayage caou- dans la version souhaitée, plus longue, et des tarauds tchouc-flexible (RFC) offre les propriétés d'amortisse- moins chers dans la longueur standard. Les tarauds ment nécessaires dans les directions axiale et radiale. coûteux ne sont plus nécessaires dans la version la

... et avec un refroidissement optimal.

Une caractéristique unique est que les versions CENTRO|P synchro étendues disposent d'une alimentation interne en lubrifiant de refroidissement malgré leur contour extérieur extrêmement fin.

Comme le montrent les photos, cette alimentation interne en liquide de refroidissement garantit qu'il y a toujours suffisamment de liquide de refroidissement directement sur l'arête de coupe, même dans le cas de contours critiques. Le liquide de refroidissement peut être évacué par l'outil et/ou par les pinces de serrage.



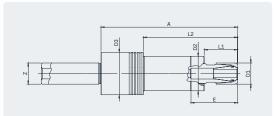
Success-Stories

Augmentation de la durée de vie de l'outil : 30% d'augmentation pour les filets M3



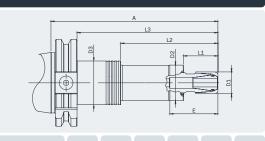
Fiabilité du processus : Production automatisée en trois équipes

Taraudage M2.5 et M3 (sans utiliser le MSC process non fiable, rupture du taraud)


Le CENTRO|P synchro en un coup d'œil

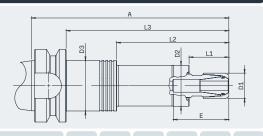
FAHRION CENTRO|P SYNCHRO GAMME DE PRODUITS 12

CYLINDRIQUE



DESCRIPTION	N° ARTICLE	TAILLE	INTERFACE	LONG		UEUR	PLAGE DE	D1 =	D2	D3	L1	L2	L3	E
DESCRIPTION	N ARTICLE	ER	INTERFACE		ARBRE	А	TARAUDAGE	DIAM. DE CLÉ Ø	DZ	DS		LZ	LS	
MSC8-Z10-A=83	53010340831	ER8	Z10	IC	18	83	M0,5 - M3	10	20	26	18	55	=A	25
MSC8-Z10-A=165	53010341651	ER8	Z10	IC	100	165	M0,5 - M3	10	20	26	100	137	=A	25
MSC8-Z10-A=215	53010342151	ER8	Z10	IC	150	215	M0,5 - M3	10	20	26	150	187	=A	25
MSC11-Z16-A=103	53031341031	ER11	Z16	IC	25	103	M3 - M6	16	26	32	25	71	=A	35
MSC11-Z16-A=228	53031342281	ER11	Z16	IC	150	228	M3 - M6	16	26	32	150	196	=A	35
MSC11-Z16-A=278	53031342781	ER11	Z16	IC	200	278	M3 - M6	16	26	32	200	246	=A	35
DSC16-Z16-A=116	55033301161	ER16	Z16	IC	34	116	M5 - M8	30	34	40	34	84	=A	37

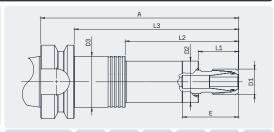
SK (ISO 7388-1 Forme AD)



DESCRIPTION	N° ARTICLE	TAILLE	INTERFACE	TEDEACE		LONGUEUR		PLAGE DE D1 =		D3	L1	L2	L3	Е
DESORIFTION	N ARTICLE	ER	INTERFACE		ARBRE	А	TARAUDAGE	DIAM. DE CLÉ Ø	D2	DS		LZ	LS	
MSC11-AD40-A=122	53141341221	ER11	SK40	IC	25	122	M3 - M6	16	26	32	25	71	103	35
MSC11-AD40-A=247	53141342471	ER11	SK40	IC	150	247	M3 - M6	16	26	32	150	196	228	35
MSC11-AD40-A=297	53141342971	ER11	SK40	IC	200	297	M3 - M6	16	26	32	200	246	278	35
DSC16-AD40-A=135	55143301351	ER16	SK40	IC	34	135	M5 - M8	30	34	40	34	84	116	37

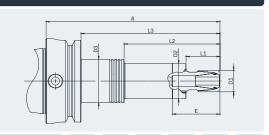
FAHRION CENTRO|P SYNCHRO GAMME DE PRODUITS 13

BT (ISO 7388-2 Forme JD)



DESCRIPTION	N° ARTICLE	TAILLE	INTERFACE	TEDEAGE		UEUR	PLAGE DE	D1 =	D2	D3	L1	L2	L3	E
DESCRIPTION	N ARTICLE	ER	INTERFACE		ARBRE	А	TARAUDAGE	DIAM. DE CLÉ Ø	DZ	D3		LZ	LS	
	BT30													
MSC8-BT30-A=105	53420341051	ER8	BT30	IC	18	105	M0,5 - M3	10	20	26	18	55	83	25
MSC8-BT30-A=187	53420341871	ER8	BT30	IC	100	187	M0,5 - M3	10	20	26	100	137	165	25
MSC8-BT30-A=237	53420342371	ER8	BT30	IC	150	237	M0,5 - M3	10	20	26	150	187	215	25
MSC11-BT30-A=125	53421341251	ER11	BT30	IC	25	125	M3 - M6	16	26	32	25	71	103	35
MSC11-BT30-A=250	53421342501	ER11	BT30	IC	150	250	M3 - M6	16	26	32	150	196	228	35
MSC11-BT30-A=300	53421343001	ER11	BT30	IC	200	300	M3 - M6	16	26	32	200	246	278	35
DSC16-BT30-A=138	55423301381	ER16	BT30	IC	34	138	M5 - M8	30	34	40	34	84	116	37
					I	BT40								
MSC11-BT40-A=130	53441341301	ER11	BT40	IC	25	130	M3 - M6	16	26	32	25	71	103	35
MSC11-BT40-A=255	53441342551	ER11	BT40	IC	150	255	M3 - M6	16	26	32	150	196	228	35
MSC11-BT40-A=305	53441343051	ER11	BT40	IC	200	305	M3 - M6	16	26	32	200	246	278	35
DSC16-BT40-A=143	55443301431	ER16	BT40	IC	34	143	M5 - M8	30	34	40	34	84	116	37

BTP (BT avec cone face-similaire à ISO 7388-2 forme JD)



DESCRIPTION	N° ARTICLE	TAILLE	INTERFACE		LONG	UEUR	PLAGE DE	D1 =	D2	D3	L1	L2	L3	Е	
DESCRIPTION	N ARTICLE	ER	INTERFACE		ARBRE	А	TARAUDAGE	DIAM. DE CLÉ Ø	DZ	DS		LZ	LS	E	
MSC8-BTP30-A=105	53430341051	ER8	BTP30	IC	18	105	M0,5 - M3	10	20	26	18	55	83	25	
MSC8-BTP30-A=187	53430341871	ER8	BTP30	IC	100	187	M0,5 - M3	10	20	26	100	137	165	25	
MSC8-BTP30-A=237	53430342371	ER8	BTP30	IC	150	237	M0,5 - M3	10	20	26	150	187	215	25	
MSC11-BTP30-A=125	53431341251	ER11	BTP30	IC	25	125	M3 - M6	16	26	32	25	71	103	35	
MSC11-BTP30-A=250	53431342501	ER11	BTP30	IC	150	250	M3 - M6	16	26	32	150	196	228	35	
MSC11-BTP30-A=300	53431343001	ER11	BTP30	IC	200	300	M3 - M6	16	26	32	200	246	278	35	

FAHRION CENTRO|P SYNCHRO GAMME DE PRODUITS 14

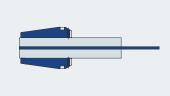
HSK-A (ISO 12164-1)

DESCRIPTION	N° ARTICLE	TAILLE	INTERFACE	TEREACE		LONGUEUR		D1 =	D2	D3	L1	L2	L3	E
DESCRIPTION	N ARTICLE	ER	INTERFACE		ARBRE	А	TARAUDAGE	DIAM. DE CLÉ Ø	DZ	D3	LI	LZ	LS	
MSC8-HSK-A63-A=109	54160341091	ER8	HSK-A63	IC	18	109	M0,5 - M3	10	20	26	18	55	83	25
MSC8-HSK-A63-A=191	54160341911	ER8	HSK-A63	IC	100	191	M0,5 - M3	10	20	26	100	137	165	25
MSC8-HSK-A63-A=241	54160342411	ER8	HSK-A63	IC	150	241	M0,5 - M3	10	20	26	150	187	215	25
MSC11-HSK-A63-A=129	54161341291	ER11	HSK-A63	IC	25	129	M3 - M6	16	26	32	25	71	103	35
MSC11-HSK-A63-A=254	54161342541	ER11	HSK-A63	IC	150	254	M3 - M6	16	26	32	150	196	228	35
MSC11-HSK-A63-A=304	54161343041	ER11	HSK-A63	IC	200	304	M3 - M6	16	26	32	200	246	278	35
DSC16-HSK-A63-A=142	56163301421	ER16	HSK-A63	IC	34	142	M5 - M8	30	34	40	34	84	116	37

FAHRION CENTRO P SYNCHRO GAMME DE PRODUITS 15

Aperçu des pinces de serrage FAHRION adaptées

Version DIN ISO 15488-B

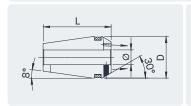


POUR MSC11

PINCES DE SERRAGE HAUTE PRÉCISION GERC11-HPD

GERC11-HPD Ø 3-6 MM JOINT POUR ARROSAGE INTER

=	2 µm
D =	11,2 mm
L =	18,0 mm


Tolé	rance de serrage de l'outil		h9
Ø mm	N° ARTICLE	Ø inch	N° ARTICLE
3,0	13621010300	1/8"	13621040318
4,0	13621010400	3/16"	13621040476
5,0	13621010500	1/4"	13621040635
6,0	13621010600		

PINCES DE SERRAGE HAUTE PRÉCISION GERC11-HPDD

GERC11-HPDD Ø 3-6 MM

JOINT POUR ARROSAGE EXTER

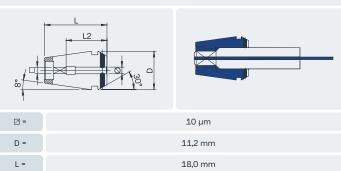
Tolérance de serrage de l'outil

=	2 µm
D =	11,2 mm
L=	18,0 mm

Ø mm	N° ARTICLE	Ø inch	N° ARTICLE
3,0	13631010300	1/8"	13631040318
4,0	13631010400	3/16"	13631040476
6,0	13631010600	1/4"	13631040635

POUR MSC11 (AVEC CARRÉ D'ENTRAÎNEMENT)

PINCES DE SERRAGE POUR TARAUDS GERC11-GBD



PINCES DE SERRAGE POUR TARAUDS GERC11-GBDD

GERC11-GBDD Ø 2,8-6 MM

JOINT POUR ARROSAGE INTER

	18,0 mm
le serrage de l'out	il h9
L2	N° ARTICLE
12	13822010280
	L2

JOINT POUR AR	ROSAGE EXTER
L2 000000000000000000000000000000000000	
☑ =	10 μm
D =	11,2 mm
1 =	18.0 mm

Ø/□ mm	L2	N° ARTICLE
2,8/2,1	12	13832010280
3,5/2,7	14	13832010350
4,0/3,2	14	13832010400
4,5/3,55	14	13832010450
6,0/5,0	14	13832010600
0,0/0,0	14	13032010000

Tolérance de serrage de l'outil

POUR DSC16

L=

2,2

2,3

2,4

2,5

2,6

2,7

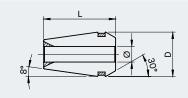
13613010220

13613010230

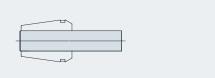
13613010240

13613010250

13613010260


13613010270

PINCES DE SERRAGE HAUTE PRÉCISION GERC16-HP



GERC16-HP Ø 1-10 MM

STANDARD

Tolérance de serrage de l'outil

 \square = $$2\,\mu m$$ D = $$17,0\,m m$$

27,5 mm

N° ARTICLE N° ARTICLE 13613010100 1,0 2,8 13613010280 13613010110 2,9 13613010290 1,1 13613010120 3,0 13613010300 1,3 13613010130 3,1 13613010310 13613010140 3,2 13613010320 1,4 1,5 13613010150 3,3 13613010330 1,6 13613010160 3,4 13613010340 13613010170 13613010350 1,7 3,5 13613010180 3,6 13613010360 1,8 13613010190 3,7 13613010370 2,0 13613010200 3,8 13613010380 13613010210 13613010400 2,1 4,0

4,5

5,0

5,5

5,6

6,0

6,3

13613010450

13613010500

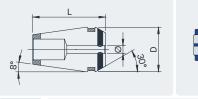
13613010550

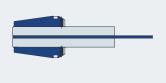
13613010560

13613010600

13613010630

	TR	,	
Ø mm	N° ARTICLE	Ø inch	N° ARTICLE
6,5	13613010650	1/16"	13613040159
7,0	13613010700	3/32"	13613040238
7,1	13613010710	1/8"	13613040318
7,5	13613010750	5/32"	13613040397
8,0	13613010800	3/16"	13613040476
8,5	13613010850	7/32"	13613040556
9,0	13613010900	1/4"	13613040635
9,5	13613010950	9/32"	13613040714
10,0	13613011000	5/16"	13613040794
		11/32"	13613040873
		3/8"	13613040953


POUR DSC16

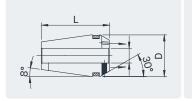

PINCES DE SERRAGE HAUTE PRÉCISION GERC16-HPD

GERC16-HPD Ø 3-10 MM

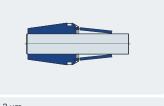
JOINT POUR ARROSAGE INTER

∅ =	2 µm
D =	17,0 mm
L=	27,5 mm

Tolérance de serrage de l'outil


Ø mm	N° ARTICLE	Ø inch	N° ARTICLE
3,0	13623010300	1/8"	13623040318
4,0	13623010400	5/32"	13623040397
5,0	13623010500	3/16"	13623040476
6,0	13623010600	7/32"	13623040556
7,0	13623010700	1/4"	13623040635
8,0	13623010800	9/32"	13623040714
9,0	13623010900	5/16"	13623040794
10,0	13623011000	11/32"	13623040873
		3/8"	13623040953
		13/32"	13623041032

PINCES DE SERRAGE HAUTE PRÉCISION GERC16-HPDD


GERC16-HPDD Ø 3-10 MM

JOINT POUR ARROSAGE EXTER

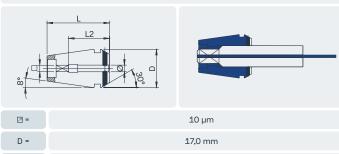
13633011000

10,0

13633040953

=	2 μm
D =	17,0 mm
1 =	27.5 mm

Tolérance de serrage de l'outil		h9		
Ø mm	N° ARTICLE	Ø inch	N° ARTICLE	
3,0	13633010300	1/8"	13633040318	
4,0	13633010400	3/16"	13633040476	
6,0	13633010600	1/4"	13633040635	
8,0	13633010800	5/16"	13633040794	


POUR DSC16 (AVEC CARRÉ D'ENTRAÎNEMENT)

PINCES DE SERRAGE POUR TARAUDS GERC16-GBD

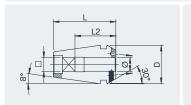
GERC16-GBD Ø 2,8-9 MM

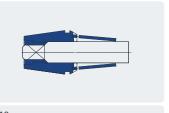
JOINT POUR ARROSAGE INTER

27,5 mm

Tolérance	de serrage	de l'outil	

h9


Ø/□mm	L2	N° ARTICLE
2,8/2,1	18	13823010280
3,5/2,7	18	13823010350
4,0/3,2	18	13823010400
4,5/3,55	18	13823010450
5,0/4,0	18	13823010500
5,5/4,5	18	13823010550
6,0/5,0	18	13823010600
6,3/5,0	18	13823010630
7,0/5,6	18	13823010700
7,1/5,6	18	13823010710
8,0/6,3	22	13823010800
9,0/7,1	22	13823010900


PINCES DE SERRAGE POUR TARAUDS GERC16-GBDD

GERC16-GBDD Ø 3,5-9 MM

JOINT POUR ARROSAGE EXTER

<u> </u>	10 µm
D =	17,0 mm
1 =	27.5 mm

Tolérance	de serrage de	e l'outil

h9

Ø/□ mm	L2	N° ARTICLE
3,5/2,7	18	13833010350
4,5/3,55	18	13833010450
6,0/5,0	18	13833010600
7,0/5,6	18	13833010700
8,0/6,3	22	13833010800
9,0/7,1	22	13833010900

Avons-nous réussi à vous convaincre ?

Profitez-en dès maintenant et rendez votre processus de filetage plus fiable ou augmentez la durée de vie de vos outils.

CONTACT

Peter Schwenger customer.service@fahrion.de +49 (0)151 18 51518 3

